120 research outputs found

    Spectral Study of the HESS J1745-290 Gamma-Ray Source as Dark Matter Signal

    Get PDF
    We study the main spectral features of the gamma-ray fluxes observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source during the years 2004, 2005 and 2006. In particular, we show that these data are well fitted as the secondary gamma-rays photons generated from dark matter annihilating into Standard Model particles in combination with a simple power law background. We present explicit analyses for annihilation in a single standard model particle-antiparticle pair. In this case, the best fits are obtained for the u and d quark-antiquark channels and for the WW and ZZ gauge bosons, with background spectral index compatible with the Fermi-Large Area Telescope (LAT) data from the same region. The fits return a heavy WIMP, with a mass above 10 TeV approximately, but well below the unitarity limit for thermal relic annihilation.Comment: 15 pages, 14 figures. arXiv admin note: text overlap with arXiv:1204.065

    Analysis of the Very Inner Milky Way Dark Matter Distribution and Gamma-Ray Signals

    Get PDF
    We analyze the possibility that the HESS gamma-ray source at the Galactic Center could be explained as the secondary flux produced by annihilation of TeV Dark Matter (TeVDM) particles with locally enhanced density, in a region spatially compatible with the HESS observations themselves. We study the inner 100 pc considering (i) the extrapolation of several density profiles from state-of-the-art N-body + Hydrodynamics simulations of Milky Way-like galaxies, (ii) the DM spike induced by the black hole, and (iii) the DM particles scattering off by bulge stars. We show that in some cases the DM spike may provide the enhancement in the flux required to explain the cut-off in the HESS J1745-290 gamma-ray spectra as TeVDM. In other cases, it may helps to describe the spatial tail reported by HESS II at angular scales < 0.54 degrees towards Sgr A.Comment: 6 pages, 3 figures, 1 table. Accepted for publication in Physical Review D - Rapid Communication

    Antiproton signatures from astrophysical and dark matter sources at the galactic center

    Get PDF
    The center of our Galaxy is a complex region characterized by extreme phenomena. The presence of the supermassive Sagittarius A* black hole, a high Dark Matter density and an even higher baryonic density are able to produce very energetic processes. Indeed, high energetic gamma rays have been observed by different telescopes, although its origin is not clear. In this work, we constrain the possible antiproton flux component associated to this signal. The expected secondary astrophysical antiproton background already saturates the observed data. It implies that any other important astrophysical source leads to an inconsistent excess, since the theoretical uncertainties corresponding to the mentioned background are small. The constraints depend on the diffusion model and the spectral features of the source. In particular, we consider antiproton spectra described by a power-law, a monochromatic signal and a Standard Model particle-antiparticle channel production.Comment: 16 pages, 12 figure

    Dark matter origin of the gamma ray emission from the galactic center observed by HESS

    Get PDF
    We show that the gamma ray spectrum observed with the HESS array of Cherenkov telescopes coming from the Galactic Center (GC) region and identified with the source HESS J1745-290, is well fitted by the secondary photons coming from dark matter (DM) annihilation over a diffuse power-law background. The amount of photons and morphology of the signal localized within a region of few parsecs, require compressed DM profiles as those resulting from baryonic contraction, which offer 103\sim 10^3 enhancements in the signal over DM alone simulations. The fitted background from HESS data is consistent with recent Fermi-LAT observations of the same region.Comment: 4 pages, 3 figures. Improved resolution analysi

    Indirect constraints to branon dark matter

    Get PDF
    If the present dark matter in the Universe annihilates into Standard Model particles, it must contribute to the gamma ray fluxes detected on the Earth. Here we briefly review the present constraints for the detection of gamma ray photons produced in the annihilation of branon dark matter. We show that observations of dwarf spheroidal galaxies and the galactic center by EGRET, Fermi-LAT or MAGIC are below the sensitivity limits for branon detection. However,future experiments such as CTA could be able to detect gamma-ray photons from annihilating branons of masses above 150 GeV.Comment: 4 pages, 3 figures. Contribution to the Proceedings of Spanish Relativity Meeting ERE2011, Madrid 29 August - 2 September 201

    Gamma-ray and neutrino fluxes from Heavy Dark Matter in the Galactic Center

    Get PDF
    We present a study of the Galactic Center region as a possible source of both secondary gamma-ray and neutrino fluxes from annihilating dark matter. We have studied the gamma-ray flux observed by the High Energy Stereoscopic System (HESS) from the J1745-290 Galactic Center source. The data are well fitted as annihilating dark matter in combination with an astrophysical background. The analysis was performed by means of simulated gamma spectra produced by Monte Carlo event generators packages. We analyze the differences in the spectra obtained by the various Monte Carlo codes developed so far in particle physics. We show that, within some uncertainty, the HESS data can be fitted as a signal from a heavy dark matter density distribution peaked at the Galactic Center, with a power-law for the background with a spectral index which is compatible with the Fermi-Large Area Telescope (LAT) data from the same region. If this kind of dark matter distribution generates the gamma-ray flux observed by HESS, we also expect to observe a neutrino flux. We show prospective results for the observation of secondary neutrinos with the Astronomy with a Neutrino Telescope and Abyss environmental RESearch project (ANTARES), Ice Cube Neutrino Observatory (Ice Cube) and the Cubic Kilometer Neutrino Telescope (KM3NeT). Prospects solely depend on the device resolution angle when its effective area and the minimum energy threshold are fixed.Comment: 10 pages, 6 figures, To appear on the proceedings of TAUP2013 "13th International Conference on Topics in Astroparticle and Underground Physics

    Highlights on gamma rays, neutrinos and antiprotons from TeV Dark Matter

    Get PDF
    We analyze the possibility that the HESS γ-ray source at the Galactic center could be explained as the secondary flux produced by annihilation of TeV dark matter (DM) particles with locally enhanced density, in a region spatially compatible with the HESS observations themselves. We study the inner 100 pc considering (i) the extrapolation of several density profiles from state-of-the-art N-body þ hydrodynamics simulations of Milky Way-like galaxies, (ii) the DM spike induced by the black hole, and (iii) the DM particles scattering off by bulge stars. We show that in some cases the DM spike may provide the enhancement in the flux required to explain the cutoff in the HESS J1745-290γ-ray spectra as TeV DM. In other cases, it may help to describe the spatial tail reported by HESS II at angular scales ≲0.54° toward Sgr A*
    corecore